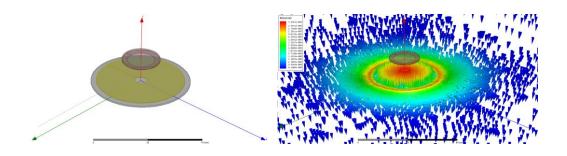


BA/SA/MA/DA

Optimierung eines induktiven Energieübertragungssystems – Verbesserung der Kopplung

Motivation


Die Grundidee ist nicht neu: In industriellen Transportsystemen existiert dieses Konzept schon seit langem. Es ist eine benutzerfreundliche Lösung: Das Kabel entfällt und damit auch der Umstand dieses bei Regen oder Kälte mit der Ladestation verbinden zu müssen. Die Energieübertragung erfolgt induktiv über den Luftspalt zweier Spulen, die Primär- und die Sekundärspule. Ähnlich wie bei einem Transformator, hier sind die Spulen jedoch resonant über Luft gekoppelt. Dabei wird auf deutlich höhere Frequenzen zurückgegriffen (kHz-Bereich), um die Übertragungseffizienz zu steigern.

Beschreibung der Arbeit

Zur Kopplungsverbesserung werden hochpermeable Materialien (Ferrite) eingesetzt. Mittels der Feldberechnungssoftware Maxwell sollen optimierte Geometrien für den Einsatz in induktiven Übertragungssystemen entworfen werden. Dabei sind viele Varianten denkbar.

Aufgabenstellung

- Recherche zum Aufbau eines Übertragungssytems, zum grundlegenden Funktionsprinzip und zu den verschiedenen Spulensystemen
- Auswahl von Vergleichsparametern
- Grundlagensimulationen zum Einsatz der Ferrite
- Geometrieoptimierung
- Abschließende Bewertung

Voraussetzungen

- Erfahrungen im Umgang mit Maxwell von Vorteil
- Selbständige Arbeitsweise und vor allem Interesse an der Thematik

Dipl.-Ing. Benjamin Klaus Raum 309 Tel 0721/608-43067 E-mail: benjamin.klaus@kit.edu